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ABSTRACT
Electroencephalographic complexity and decreased randomness in drug-naive 
obsessive-compulsive patients
Objective: Studies investigating the complexity in electroencephalography (EEG) in various 
neuropsychiatric disorders have yielded abnormal results. However, few studies have examined EEG 
complexity in obsessive-compulsive disorder (OCD). 
Methods: An eyes-closed scalp EEG series of 3 minutes was recorded in drug-naive patients with OCD and 
in healthy controls. Each single trial was segmented into multiple identical epochs using two windows of 10 
and 30 seconds. Both Kolmogorov Complexity (KC) values and autoregressive (AR) model orders were 
estimated to quantify the EEG complexity for segmented EEG epochs. 
Results: The EEG complexity, measured by both KC and AR model orders and in estimations using window 
lengths of 10 and 30 seconds, was lower in the patients than in the controls. In the AR model orders, the 
10-second window differentiated the patients and controls better than the 30-second window. 
Conclusion: OCD is characterized by low EEG complexity, increased regularity, or decreased randomness. 
Segmentation of EEG signals is useful for their quantitative identification, a smaller window providing a more 
sensitive characterization of EEG.
Keywords: Autoregressive model order, EEG complexity, Kolmogorov complexity, obsessive compulsive 
disorder

ÖZET
Tedavi almamış obsesif-kompulsif hastalarda elektroensefalografik karmaşıklık ve 
azalmış rasgelelik 
Amaç: Çalışmalar birbirinden farklı nöropsikiyatrik hastalıklarda elektroensefalografide (EEG) karmaşıklığın 
anormal olduğunu göstermiştir. Ancak obsesif kompülsif bozuklukta (OKB) EEG karmaşıklığını araştıran çok az 
çalışma vardır.
Yöntem: OKB’li hastalarda ve sağlıklı kontrollerde gözler kapalı halde 3 dakikalık EEG serileri çekildi. Her bir seri, 
10 ve 30 saniyelik pencerelere bölünerek çoklu özdeş epoklara ayrıldı. Kolmogorov karmaşıklığı (KK) ve oto 
regresif (OR) model kullanılarak segmentlere ayrılmış EEG epoklarının karmaşıklığı hesaplandı. 
Bulgular: Gerek KK gerekse OR model, OKB’lilerde karmaşıklığın kontrollere göre anlamlı derecede düşük 
olduğunu gösterdi. Bu düşüklük hem 10 hem de 30 saniyelik pencereler için geçerliydi, ama OR modelde 10 
saniyelik pencere hastalarla kontrolleri 30 saniyelik pencereye göre daha iyi ayırt etti.
Sonuç: OKB’lilerin EEG’lerinde karmaşıklık ve rastgelelik azalmış, düzenlilik artmıştır. Kantitatif bir belirleme 
yapabilmek için EEG sinyallerinin segmentasyonu faydalıdır. Daha küçük pencereler EEG karmaşıklığını daha 
duyarlı biçimde gösterir. 
Anahtar kelimeler: Oto regresif model düzeni, EEG karmaşıklığı, Kolmogorov karmaşıklığı, obsesif kompülsif 
bozukluk 

Dusunen Adam The Journal of Psychiatry and Neurological Sciences 2017;30:101-112
DOI: 10.5350/DAJPN2017300204

Address reprint requests to/ Yazışma adresi:
Oguz Tan,
Uskudar University, Neuropsychiatry Health 
Practice and Research Center,
Bagdat Caddesi, No:109/A, Feneryolu
Kadikoy/Istanbul, Turkey

Phone / Telefon: +90-216-418-1500 

E-mail address / Elektronik posta adresi:
oguz.tan@uskudar.edu.tr  

Date of receipt / Geliş tarihi:
April 20, 2016 / 20 Nisan 2016 

Date of the first revision letter /
İlk düzeltme öneri tarihi:
May 18, 2016 / 18 Mayıs 2016

Date of acceptance / Kabul tarihi:
December 10, 2016 / 10 Aralık 2016

INTRODUCTION

The brain, which comprises billions of neurons 
and synapses, represents a highly complicated 

and nonlinear organization characterized by complex 

spatial and temporal fluctuations in healthy 
individuals (1) and in pathological conditions (2,3). Its 
stochastic behavior can be defined through 
deterministic equations that allow estimating the 
progression of the system during a certain period of 
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time (4). In recording the biological signals carrying 
the aforementioned features, electroencephalography 
(EEG) has stood out as a useful, non-invasive, and 
relatively cheap instrument. The extraordinarily 
entangled organization of human brain (which is full 
of exceedingly dynamic groups of neurons 
continuously interacting with each other) manifests 
itself in EEG as complex temporal fluctuations that 
are evidence for nonlinear dynamic processes in the 
brain (5). The fact that human brain produces 
nonlinear neurophysiological signals indicates the 
working principles of an individual neuron: first, the 
threshold (the level of the membrane potential at 
which an action potential is fired) and, second, 
saturation (the level arising from the refractory period 
for firing) (6). Thanks to these two characteristics, the 
arrival of a stimulus does not essentially require that a 
neural response ensues. The lack of a direct and linear 
association between the presence of stimuli and the 
occurrence of neural responses is the cellular basis of 
the nonstationary, changeable, and nonlinear property 
of EEG activity. 
	 Due to the nonlinearity of electroencephalographical 
output of the neural processes in the brain, EEG is a 
stochastic time series and therefore it requires the 
application of nonlinear analytical methods. Various 
nonlinear analytical methods have been used in brain 
researches, such as correlation dimension, omega-
complexity, neural complexity, multiscale entropy, 
Lempel-Ziv complexity, Lyapunov exponent, 
Higuchi’s fractal dimensions, Shannon entropy, and 
approximate entropy (2,6,7). These methods have 
allowed the complex, stochastic, nonlinear activity of 
the EEG to be quantified. Therefore, a body of 
literature investigating the complexity or entropy of 
the electrophysiological activity of the brain has 
emerged.
	 The nonlinear analysis of EEG signals has, thus, 
launched a novel approach in the neuroimaging of 
brain physiology. The importance of nonlinear 
analysis techniques rests on the fact that they might 
successfully reflect the progression of brain oscillations 
within a given temporal period and thus have the 
capacity to contribute to our understanding of the 

dynamical characteristics of mental illnesses. The 
complexity measures mentioned above are used for 
this purpose and they reflect two aspects of a bodily 
mechanism: a) entropy, that is, the extent to which the 
activity of an organ is predictable, and b) the minimum 
number of variables allowing the estimation of the 
activity of the organ under investigation (6).
	 Although early studies of complexity research have 
proposed that a healthy organ is characterized by an 
increased complexity and the process of disease 
decreases complexity, later studies have produced 
discrepant results (6). Aberrant EEG complexity has 
been mostly investigated in schizophrenia (3,8) and 
Alzheimer’s disease (7,9-12). Several studies that have 
investigated EEG complexity in autism spectrum, (13) 
mood disorders (5,14-19), posttraumatic stress 
disorder (PTSD) (20), panic disorder (21) attention 
deficit and hyperactivity disorder (22,23), with each 
showing abnormal (increased or decreased) 
complexity, have also been published. Thus, change in 
EEG complexity has come on the scene as a biological 
marker of mental disorders. Interestingly, obsessive-
compulsive disorder (OCD), a unique, prevalent, and 
frequently incapacitating disorder, has rarely been a 
subject of complexity research.
	 OCD is characterized by obsessions (unwanted 
and intrusive thoughts that cause distress) and 
compulsions (repetitive behaviors or mental acts in 
most cases as an attempt to relieve the anxiety 
caused by obsessions). Various neuroimaging 
methods including functional and structural 
magnetic resonance imaging, magnetic resonance 
spectroscopy, positron emission tomography, and 
single-photon emission tomography have been 
employed in OCD, denoting anatomical and 
physiological abnormalities particularly involving 
the fronto-cortical-striato-thalamic circuitry (24). 
EEG studies in OCD have usually used quantitative 
analysis methods and investigated which frequency 
bands predominate (25-31). The common finding in 
most of these studies is the involvement of the frontal 
and frontotemporal areas; nevertheless, frequency 
analysis has yielded inconsistent results. Some studies 
have demonstrated that slow activity bands (delta and 
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theta) predominate in contrast to the other ones 
showing a preponderance of alpha and beta activity. 
To our knowledge, however, no study investigating 
EEG complexity in OCD has been published in 
English except a former study of ours (32).
	 We hypothesized that complexity changes (either 
increases or decreases) in OCD, as the case with other 
neuropsychiatric disorders. To investigate this, we 
recruited drug-naive patients with OCD; thus, we 
were able to exclude the effect of medication on brain 
physiology and EEG. We employed two different 
methods to estimate complexity, the Kolmogorov 
Complexity (KC), and autoregressive orders (AR). The 
current study differs from our former study in two 
aspects: 1) we used different methods to measure 
complexity (approximate entropy, sample entropy, 
and permutation entropy were used in the previous 
study); 2) the current study calculated complexity in 
two different window lengths (a short window of 
10-second length and a long window of 30-second 
length).

	 METHOD

	 All patients, who apply to Uskudar University 
Neuropsychiatry Health Practice and Research Center 
and had never received psychiatric treatment were 
assessed with EEG in addition to other standard tools 
of neuropsychiatric evaluation. Out of all the drug-
naive patients with OCD, who were examined in the 
Feneryolu Outpatient Department between August 

2008 and March 2012, 10 were appropriate for 
inclusion in this study (mean age=30.70±8.38, five 
males and five females). Table 1 shows the mean 
values of demographic characteristics and clinical 
measures. OCD, diagnosed according to the 
Diagnostic Statistical Manual of Mental Disorders, 4th 
Edition (33), following the Structured Clinical 
Interview for DSM-IV Axis I Disorders (SCID-I) (34) 
was the major lifetime mental problem suffered by the 
persons in this study. Exclusion criteria included a 
history of traumatic head injury, schizophrenia or any 
other psychotic disorder, bipolar I or II disorder, 
alcohol, and substance abuse, left-handedness, mental 
retardation, or any neurological disorder (such as 
epilepsy or multiple sclerosis) since these criteria may 
have confounded the electrophysiological activity. 
EEG data were also acquired for 10 age- and sex-
matched healthy controls. The university’s Ethics 
Committee approved the research protocol, and a 
form of written consent was signed by voluntary 
participants.

	 Measures

	 The severity of OCD was assessed using the 
Turkish version of the Yale-Brown Obsessive-
Compulsive Scale (35-37). The Turkish version of the 
Hamilton Depression Rating Scale-17 (38,39) was 
used to measure the severity of depression. The 
anxiety score was estimated by employing the Turkish 
version of the Beck Anxiety Inventory (40,41).

Table 1: Descriptive statistics for the patients

Patients Controls

Mean SD Mean SD

Age 30.70 8.38 30.30 6.43

Years of education 12.80 2.97 12.50 3.84

Duration from the appearance of initial symptoms (years) 11.70 7.13

Duration from the appearance of obvious symptoms (months) 25.40 21.13

Yale-Brown Obsession and Compulsion Score 18.70 4.81

Obsession score 10.60 2.41

Compulsion score 8.10 5.30

Hamilton Depression Rating Scale-17 12.30 5.58

Beck Anxiety Inventory 16.80 8.80

SD: Standard deviation
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	 Data Collection

	 Scalp EEG series were recorded from subjects using 
a 19-channel Neuroscan SynAmps II (Neuroscan 
Products, Compumedics, USA) recording system. Ag/
AgCl surface electrodes were attached to the scalp 
surface of volunteers in accordance with the 
international 10-20 recording system, using a quick 
cap within a light-controlled recording room. During 
measurements, the temperature was set to 
approximately 22°C. EEG series of 3 minutes were 
sampled at a frequency of 250Hz and digitized with a 
12-bit analog-to-digital converter.
	 The impedance values of electrodes were kept less 
than 5kΩ. The rejection level was 50µVolt peak-to-
peak for EOG signals to remove artifacts created by eye 
blinks or movements. An electrode was placed inferior 
to the right eye, and two electrodes were located on 
the left and right outer acanthi of the eyes to measure 
both vertical and horizontal bipolar EOG signals. A 
low pass filter at 0.5Hz and a high pass filter at 70Hz 
were applied to the acquired EEG series in Scan Edit 
4.3 software. Furthermore, artifacts (blinks, eye 
movements, muscle activities, etc.) were eliminated by 
a researcher who carefully inspected the recordings. 

	 Estimation of the Kolmogorov Complexity

	 In 1965, a definition of algorithmic complexity was 
presented by Kolmogorov for a given string of zeros and 
ones (42). Subsequently, a procedure was proposed by 
Lempel (43) and described by Kaspar (44) in detail to 
calculate this algorithmic complexity, the so-called 
Kolmogorov Complexity (KC). The basic principle of 
this algorithm is that the complexity of a string is 
correlated by a computer program that is required to 
generate the string of interest. KC was defined as the 
descriptive complexity originated by a string denoted by 
x in the form KC(x) = min{length(p) / T(p) = x} (6).
	 Here, x is generated by a universal computer, the 
so-called Turing machine, which is denoted by T with 
the size of the program considered length(p) (45).
	 In computing KC, EEG series are considered as 
binary sequences, and the number of bits of the 

shortest computer program that can create this binary 
sequence is estimated to define the complexity of the 
EEG (46). A detailed description of the algorithm, 
proposed by Lempel and Ziv (43) to compute the 
length of the required computer program, is provided 
in the literature (44). The EEG series is converted to a 
binary sequence in computing KC. A regular binary 
sequence generates high KC values.
 	 Regarding time sequences such as EEG signals, 
every sample is compared with the mean value of the 
sequence (mvs). Then, if the sample is greater than the 
mvs, 1 is addressed to this sample. Correspondingly, if 
the sample is less than the mvs, the sample takes a 
value of zero. As a result of this primary mapping, KC 
can be computed from a digitized sequence consisting 
of zeros and ones (44). From a theoretical point of 
view, the expected value of KC matches the Shannon 
entropy (47).

	 Estimation of the Auto Regressive Model Order

	 An auto regressive (AR) model was introduced to 
obtain high resolution power spectral density (PSD) 
without spectral leakage for a stationary time series 
(x(n)). This series is assumed to be the output of a 
linear system driven by white noise (w(n)) in 
parametric spectral estimation of the form 
x(n) = –∑ a(k)x(n - k)

p

k=1
, where p is the model order (48). 

Here, the estimation of p is crucial. Many computer-
based algorithms have been proposed to estimate the 
model order. Among them, Akaike Information 
Criteria and Forward Prediction Error were combined 
to estimate the accurate model order in representing 
x(n) into the algorithm of ARfit, which is not heuristic 
and is less computationally complex. 
	 AR modeling was used to model nonlinear EEG 
series in the past (49,50). To compute the AR model 
orders, Matlab modules in ARfit algorithm were 
used (48).

	 EEG Analysis

	 In the literature, EEG series is assumed to be 
stationary within just one second (51). Therefore, 
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single trial EEG measurements were segmented by 
using a constant length window covering a very short 
time interval such as 2 seconds in linear EEG analysis 
to understand the functional status of the brain (52-58). 
Regarding the common manner in these works, each 
single channel EEG measurement of 3 minutes was 
segmented by using two specified windows of 10 
seconds and 30 seconds in nonlinear EEG analysis in 
the present study. Since the sampling frequency is 
250Hz, the number of the samples in segments was 
2500 and 7500 for the windows of 10 seconds and 30 
seconds, respectively. 
	 EEG data collected from 10 patients and 10 controls 
were analyzed in Matlab 11.0. For each recording 
channel, the following steps were performed for each 
participant.

1.	 A single trial EEG signal of 3 minutes was segmented 
using a window size of 10 seconds. Then, each scalp 
measurement was divided into 15 consecutive 
epochs: a) for each epoch, both the individual AR 
model order and the value of KC were estimated as 
proposed in (45). And, then, the estimated AR 
model orders and the estimated KC values of those 
15 epochs were averaged to obtain the mean order 
and the mean value of KC, respectively.

2.	 A single trial EEG signal of 3 min was segmented 
using a window size of 30 seconds. Then, each 
single channel EEG series was divided into 5 
consecutive epochs having the same number of 
samples, and the first step was performed for these 
5 epochs.

	 Statistical Analysis

	 The analyses were performed by using the R 
Foundation for Statistical Computing (3.2.3). 
Analysis of normality was performed with the 
Kolmogorov-Smirnov test. Normally distributed 
continuous variables were expressed as mean±SD 
and non-normally distributed variables as median 
min.-max. Differences in normally distributed 
continuous variables were analyzed by the 
Independent t-test for two groups. Differences in 

non-normally distributed continuous variables were 
analyzed by the Mann-Whitney U test for two 
groups and by the Kruskal-Wallis test after the 
Bonferroni-corrected pairwise tests for more than 
two groups. Statistical significance tested for the level 
of alpha was 0.05. Electrode variable statistical 
significance tested for the level of alpha set at 
0.002632 due to the Bonferroni correction.

	 RESULTS 

	 KC for all participants within each group for time 
intervals of 10 and 30 seconds are shown in Figures 
1-a and 1-b, respectively. Patients produced 
significantly lower EEG complexity in comparison to 
controls in both window lengths (p<0.001). For the 
10-second window, KC ranged from 5.92 (minimum) 
to 7.88 (maximum) within controls (mean 
complexity=6.64 [SD=0.20], median=6.62) and from 
11.09 (minimum) to 11.68 (maximum) within patients 
(mean complexity=11.33 [SD=0.11], median=11.32) 
(p<0.001). For the 30-second window, KC ranged 
from 5.89 (minimum) to 7.09 (maximum) within 
controls (mean complexity=6.40 [SD=0.12], 
median=6.42) and from 12.89 (minimum) to 13.11 
(maximum) within patients (mean complexity 12.89 
[SD=0.03], median=12.84) (p<0.001). In both patients 
and controls, no significant difference was observed 
among scalp locations in both figures (p=1.00).
	 Estimated AR model orders for all participants 
within each group for 10- and 30-second time intervals 
are shown in Figures 2-a and 2-b, respectively. For the 
10-second window, AR model orders ranged from 10 
(minimum) to 23.94 (maximum) within controls 
(mean complexity=12.81 [SD=3.47], median=11.59) 
and from 25.06 (minimum) to 37.27 (maximum) 
within patients (mean complexity=29.42 [SD=2.90], 
median=29.13) (p<0.001). For the 30-second window, 
the range of the estimated AR orders becomes larger 
within both groups. Therefore, the 30-second window 
could not discriminate the patients and controls as 
well as the 10-second window. We could not measure 
any differences in the degree of EEG complexity 
among the different locations on the scalp (p=1.00). 
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	 In patients, for the 10-second window, some 
differences were detected among AR model orders 
created by 15 epochs. For the 30-second window, 
however, no significant differences were found among 
AR model orders originated by 5 epochs in patients.

	 DISCUSSION

	 We found a decrease in EEG complexity in drug-
naive obsessive-compulsive patients. To the best of 
our knowledge, the only other study investigating 
EEG complexity in OCD was conducted by us (32). In 
our former study, we used different measures 
(approximate entropy, sample entropy, and 
permutation entropy) to estimate the complexity in 
OCD patients who were drug-naive as the patients of 
the current study were and we found that patients had 
significantly lower complexity than controls. 
Therefore, two studies detecting the EEG complexity 

Figure 2: Estimated AR (autoregressive) orders of 
patients and controls (filled markers in black) for the 
windows of 10 seconds (a) and 30 seconds (b).

Figure 1: Estimated KC (Kolmogorov Complexity) 
values of patients and controls (filled markers in black) 
for the windows of 10 seconds (a) and 30 seconds (b). 
In Figure 1-a, it seems that all patients exhibit quite 
similar numeric values. This results from the fact that 
we showed both the patient and the control groups 
in the same axis; therefore, the scale could not be 
adjusted in line with in-group sensitivity. It should 
be considered that the standard deviations of the two 
groups are different.
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in OCD patients having similar clinical characteristics 
produced consistent results by using five different 
measures of complexity.
	 Studies on various neuropsychiatric disorders have 
shown different patterns of complexity. An increased 
complexity has been observed in relatively younger 
patients with recent-onset schizophrenia with positive 
symptoms, whereas relatively older schizophrenics 
with negative symptoms and chronic illness exhibited a 
decreased complexity (7,8). It seems that schizophrenia 
is characterized by increased complexity that decreases 
with age, protracted illness, and medication. While 
several studies have demonstrated a higher complexity 
in depression (8,17,26), Pezard et al. (15) found that, in 
first-episode depression, EEG complexity was decreased 
and after treatment returned to levels observed in 
controls. Manic patients have shown an increased 
complexity (5). In ADHD, Fernández et al. (59) found 
an increased complexity whereas Chenxi et al. (23) 
detected a lower complexity in delta and theta bands 
and higher complexity in the alpha band. During a 
cognitive task, complexity was observed to be decreased 
in the study by Sohn et al. (60) and increased by 
Zarafshan et al. (61). EEG was found to be of a low 
complexity in Alzheimer’s disease (2,9,12), autism 
spectrum disorders (13), dissociative states (62), anorexia 
nervosa (63), PTSD (20), and panic disorder (21).
	 Hypotheses about the role of disconnectivity in 
m e n t a l  d i s o r d e r s  g r e a t l y  r e l y  u p o n 
electrophysiological studies. It has been suggested 
that, as a result of aberrant neural connectivity, 
abnormal complexity behavior might be detected by 
EEG (2,6). Sporns et al. (64) proposed that the more 
connected the brain, the more complex it’s 
functioning. This proposal is in contrast to the views 
of Friston (66,66), who has elaborated the 
disconnection hypothesis in schizophrenia. This 
discrepancy might be related to the fact that 
complexity is not necessarily related to only 
connectivity. On the other hand, altered connectivity 
patterns differ among neuropsychiatric disorders and 
also differ among different clinical appearances of the 
same disorder (as the case with schizophrenia as 
mentioned above), manifesting themselves as a variety 

of neuroimaging and EEG patterns. Thus, pathological 
process might represent itself as a decreased 
complexity in some conditions such as OCD, 
Alzheimer’s disease (2,9,12), or chronic residual 
schizophrenia (3,8) and increased complexity in other 
conditions such as mania (5), some types of depression 
(15,17,18,67) and ADHD (23,59-61), or recent-onset 
schizophrenia with positive symptoms (3).
	 Yang and Tsai (68), in an attempt to solve this 
dichotomy, suggested that complexity does not 
denote ‘randomness’ (69). Any complex structure 
must essentially include a remarkable amount of 
information, and complexity may increment 
proportionally with increasing information. As an 
example, Yang and Tsai gave a Shakespearean text 
that is both complex and highly informative. By 
contrast, a text produced aimlessly by a monkey 
typing should be referred to as ‘random’ rather than 
‘complex’ because it conveys no information. By 
analogy, delusions of a schizophrenic person are 
conveniently called random as opposed to complex. 
According to Yang and Tsai, the healthy, complex 
brain deteriorates in two opposing ways: randomness 
or orderliness. The nervous system enables the 
organism to adapt to constantly changing 
environmental challenges; mental disorders impair 
that adaptation and produce either random or ordered 
behavior. If deterioration occurs toward randomness, 
symptoms of, for example, positive schizophrenia 
may arise; if the direction of impairment is towards 
excessive order, obsessive-compulsive-related 
symptoms may emerge. Therefore, a clearer 
terminology would involve changing the terminology 
by substituting ‘increased orderliness’ for ‘decreased 
complexity.’ Based on macroscopic observations, 
persons with obsessive-compulsive personality 
disorder show highly ordered behavior and avoid 
random situations. Those observations can be 
extended to OCD that is characterized by 
preoccupation with a single theme and inflexible 
rituals. For example, an OCD patient with 
contamination obsessions exhibits highly regular and 
predictable behaviors. His major activity is to wash his 
hands, body, and objects around him because the 
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major subject in his mind is the anxiety of being 
contaminated with bodily secretions, microorganisms, 
environmental pollutants, and so forth. As OCD 
becomes more severe, thoughts of contamination and 
washing activities take increasingly longer time periods 
in the patient’s life and a variety of all other activities 
such as working, reading, doing sports or chores, 
going out with friends, and having sex remain limited 
to a relatively much shorter duration. Such a clinical 
picture defined by a lifestyle represented by the same 
apprehensions, the same anticipations, and very same 
practical reactions every day is consistent with 
increased regularity or decreased randomness seen in 
the EEG of patients with OCD. The same monotonous 
type of thoughts and activities is also true for other 
symptom dimensions of OCD. Blasphemous or sexual 
obsessions outweigh most (or even all in some 
patients) other considerations and imaginations. 
Checking sockets, electrical devices, taps, and 
windows overshadow all other activities of everyday 
life. Certainly, we do not have sufficient evidence to 
establish a direct relationship between the microscopic 
processes within the brain and their physiologic 
outputs, such as EEG.
	 The fact that our patients were drug-naive is 
important in that suspicion about the modifying 
effect of medications on brain function has already 
been relieved. EEG studies on schizophrenia (70) 
and fMRI studies on OCD (71,72) have shown 
that pharmacotherapy reversed brain activity. 
Beucke et al. (71) and Nakao et al. (72) recruited OCD 
patients who had been non-medicated for some time, 
but not drug-naive. It cannot be excluded, however, 
that previous medication alters brain activity. 
Therefore,  the present study reports clear 
electrophysiological pathology that is not confounded 
by medical interference. 
	 Why do some disorders, such as schizophrenia, 
manifest themselves with increased EEG complexity 
while others, such as OCD, present with decreased 
complexity? Neuroimaging studies other than EEG 
have shown that frontal lobe activity decreases in 
schizophrenia (73) and increases in OCD (72). 
Therefore, it is plausible that different disorders can be 

characterized by completely different EEG patterns. 
Studies using fMRI have found a high degree of 
connectivity or hyperactivity in the orbitofrontal 
cortex and the basal ganglia (74,75) in non-medicated 
OCD patients; this connectivity decreased after using 
antidepressant drugs (71,72). Untreated schizophrenia 
that is characterized by a hypoactive and disconnected 
brain manifests as increased complexity in EEG, 
whereas OCD that is characterized by a hyperactive 
and overconnected brain comes out as a decreased 
complexity in EEG. This finding is consistent to some 
extent with research on epilepsy that has shown 
markedly decreased complexity in EEG taken during 
seizures, although epilepsy is an illness of 
overexcitation of the neural tissue (76).
	 The nonlinear dynamical methods to analyze the 
complicated and hierarchical organization of neuronal 
networks have up to date produced some information 
helpful to enhance our understanding of the 
pathological processes of mental i l lnesses. 
Nevertheless, it seems that findings are far from being 
consistent and precise. The present-day limitations of 
complexity research might be due to several issues. 
First, it is well-known that a certain mental disorder 
has a heterogeneous nature in clinical manifestations 
and in neuroanatomical, pathophysiological, and 
biochemical abnormalities (as the case with 
schizophrenia which has quite distinctive subtypes). 
Although OCD is also apparently heterogeneous in 
symptom dimensions and biological aspects, without 
any exception, all of our patients showed a decreased 
complexity that greatly differed from controls. Second, 
different methods of analysis can result in different 
estimations of complexity, a rationale for the fact that 
we employed two different methods to measure 
complexity. Both methods, the KC and AR model 
orders, revealed consistent findings. Furthermore, our 
former study (32) utilizing three different methods to 
analyze the EEG of OCD patients congruently 
demonstrated a decrease in complexity. The 
homogeneity of the findings of our patients in both 
studies (who were clinically not homogeneous except 
being drug-naive adults) might indicate that OCD 
represents a fruitful area in the research of complexity. 
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	 Past studies using quantitative EEG in OCD have 
mostly evaluated the frequency bands of delta, alpha, 
theta, and alpha. The most persistent finding is an 
increase in the slow frequency bands of either theta or 
delta waves (26-29,31) whereas only one study found 
an increased current source density in the beta 
frequencies (30). Coherence analysis, which is another 
approach to the electrophysiological investigation of 
OCD, has shown a decrease in interhemispheric 
coherence (31). The studies of frequency and coherent 
analysis have revealed the involvement of the 
frontotemporal regions predominantly (26,27,29,31), 
followed by the cingulate gyrus (27,28,30), adjacent limbic 
structures (27,31), insula (31), and parietal lobe (31). Low-
resolution electromagnetic tomography (LORETA), a 
special application of quantitative EEG, has been used 
in some of these studies as it allows the assessment of 
localization relatively more precisely than other 
electrophysiological methods. The involvement of the 
anterior brain regions is principally consistent with a 
vast body of literature using a variety of neuroimaging 
techniques (77).
	 The EEG findings in our study did not show a 
preference of certain localizations. This contradicts the 
literature and is difficult to explain. Despite the fact 
that neuroimaging researches of OCD have chiefly 
denoted abnormalities in the frontotemporal regions, 
it has been understood that the parietal and posterior 
areas are also involved, though to a lesser extent (77). 
The measurement techniques we employed might 
have enabled the estimation of posterior abnormalities 
more definitely than other methods to the degree that 
differences between the anterior and other regions 
become less discernible. Another factor might be the 
great difference between our patients and the controls 
in all electrode sites, rendering the comparison of 
regional variations relatively unimportant. The low 
spatial resolution of EEG should also be always 
considered when anatomical involvement is discussed. 
	 Our small sample size is a shortcoming of the 
study, which could be to some degree offset by the 
highly significant finding that all patients, with no 
exception, showed quite obvious difference from 
controls. Our criterion of artifact rejection was 

another, perhaps more important, shortcoming. 
Independent component analysis would be a better 
way for the quantitative detection of artifacts for a 
study on complexity. Comparisons of drug-naive 
patients to medicated and chronic patients and of pre- 
and post-treatment results with regard to complexity 
will be highly valuable. OCD is a disorder usually 
comorbid with a variety of other mental illnesses, and 
therefore the investigation of EEG after data that 
differentiates co-occurring conditions (not allowed by 
our small sample size) may present interesting 
knowledge. Using more measures of complexity in the 
same patient and control groups will shed further light 
on the area under research as different complexity 
measures may produce different results. Comparing 
the electrophysiological data of patients having OCD 
with those suffering from other neuropsychiatric 
disorders, such as schizophrenia, will enhance our 
understanding of connectivity or disconnectivity in 
the central nervous system.
	 In conclusion, the brains of drug-naive OCD 
patients are electrophysiologically less complex, more 
regular, and more random than the brains of controls. 
Investigating EEG trace in smaller window lengths 
may be more successful in differentiating patients and 
controls. These findings may contribute to the 
discussions of increased or decreased brain 
connectivity in the pathologies of the central nervous 
system when evaluated together with the former and 
future studies in this area.
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